Inhibition of bronchoconstriction by aerosol of a lipid emulsion containing prostaglandin E_1

Y. MIZUSHIMA^{*}, K. HOSHI, H. AIHARA^{**}, M. KURACHI^{**}, Department of Internal Medicine, St. Marianna University, 2095, Sugao, Kawasaki, 213 Japan, and ^{**}Research Laboratories, Taisho Pharmaceutical Co., Ltd., Ohmiya, 330 Japan

Some prostaglandins, like PGE_1 and PGE_2 , have proved to be effective bronchodilators in animals (Rosenthale et al 1971; Wassermann et al 1980), but PGE_1 has not been needed as a bronchodilator because of its irritant property (Smith et al 1975). To decrease the irritant property, we have incorporated it in a lipid emulsion (Intralipid, average of particle diameter 0.2µm) widely used for parenteral nutrition in man, and used thus as an aerosol for the treatment of bronchoconstriction.

PEG₁ and PGE₁-CD (PGE₁ cyclodextrin, Prostandin) were kindly supplied by Ono Pharm. Co., Ltd, Osaka, Japan. PGE₁ was dissolved in soybean oil at 300 μ g ml⁻¹, and incorporated in a lipid emulsion (lipo-PGE₁) prepared in a manner similar to that described by Mizushima et al (1982 a,b). The final concentration of PGE₁ in the lipo-PGE₁ was 30 μ g ml⁻¹.

Male guinea-pigs, 230–330 g, were placed in a box (24 \times 24 \times 24 cm³) equipped with a nebulizer by means of which an aerosol of a mixture of histamine hydrochloride (final conc. 0.05%) and PGE₁-CD solution, or lipo-PGE₁, was sprayed at 0.085 ml min⁻¹ into the box.

All guinea-pigs not treated with PGE₁ sneezed 1–2 min after exposure and developed a mild and then severe dyspnoea within 6 min (Table 1). Aerosolized PGE₁ given as a solution and as the lipid emulsion both significantly delayed the onset of, and decreased the severity of, dyspnoea (P < 0.01-0.05). The potencies of

* Correspondence.

the bronchodilating property of lipo-PGE₁ and PGE₁-CD were similar (Table 1: P > 0.05 at a dose of 30 µg).

Six male and 4 female volunteers inhaled aerosols of lipo-PGE₁ and PGE₁-CD in a cross over test. Lipo-PGE₁ and PGE₁-CD were given for 5 min at rates of 0.6 or 6 μ g/0.2 ml min⁻¹, and 0.6 μ g/0.2 ml min⁻¹ respectively and the degree of irritation in the upper respiratory tracts recorded.

None of volunteers given 3 μ g (0.6 μ g min⁻¹) lipo-PGE₁ complained of irritation, which the rate of 6 μ g min⁻¹ caused a minor sore throat and cough in 2 of 10 and a moderate response in 4 of 10. PGE₁-CD at 0.6 μ g min⁻¹ caused a minor irritation in 2 of 10 and a moderate response in 4 of 10 (P < 0.01 by χ^2 test between lipo-PGE₁ 0.6 μ g min⁻¹ and PGE₁-CD 0.6 μ g min⁻¹). Therefore, the irritant effect of lipo-PGE₁ aerosol on the upper respiratory tract in man seemed to be some 10 times weaker than that of PGE₁-CD.

A beneficial effect of PGE_1 aerosol was observed in some patients with bronchial asthma, but an irritation in the upper respiratory tract and an aggravation of respiratory function were observed by Smith et al (1975). We have found lipo-PGE₁ to have a similar bronchodilating action to, and much less irritation than, PGE₁-CD, suggesting the possibility of its clinical use in the treatment of bronchoconstriction in man.

We thank Green Cross Co., Osaka for preparing the PGE_1 lipid emulsion.

Table 1. Effects of aerosolized PGE ₁ (PGE ₁ -CD) and lipo-PGE ₁ (PGE ₁ in lipid emulsion) on histamine-induced dyspnoea
in conscious guinea-pigs.

		Onset of dyspnoea			Onset of severe dyspnoea		
		2 min	5 min	10 min	5 min	10 min	Death
	Control	6/6ª	6/6	6/6	6/6	6/6	2/6
PGE ₁	5 µg ml-1	1/6*	4/6	6/6	2/6	4/6	2/6
	10 µg ml-1	0/6**	4/6	6/6	3/6	5/6	2/6
	30 µg ml-1	0/6**	1/6*	2/6	1/6*	2/6	2/6
Lipo-PGE ₁	30 µg ml-1	0/6**	0/6**	3/6	0/6**	1/6*	0/6

(a) Represents the appearance of dyspnoea or severe dyspnoea evoked by histamine within each indicated time (min); Number of animals with the behavioural disorder/number of animals tested. *: P < 0.05, **: P < 0.01 in relation to control (χ^2 -test). No significant difference (P > 0.05) between PGE₁ 30 µg ml⁻¹ and lipo-PGE₁ 30 µg ml⁻¹.

REFERENCES

Mizushima, Y., Hamano, T., Yokoyama, K. (1982a) J. Pharm. Pharmacol. 34: 49-50 Rosenthale, M. E., Dervinis, A., Kassarich, J. (1971) J. Pharmacol. Exp. Ther. 178: 541 Smith, A. P., Cuthbert, M. F., Dunlop, L. S. (1975) Clin.

J. Pharm. Pharmacol. 34: 49–50 Mizushima, Y., Hamano, T., Yokoyama, K. (1982b) Ann. Rheum. Dis. 41: 263–267

Sci. Mol. Med. 48: 421 Wassermann, M. A., Griffin, R. L., Marsalisi, F. B. (1980) J. Pharmacol. Exp. Ther. 214: 68